
MATH 2443
1st Midterm Review Solutions

1. Let

f(x) =

{√
x2 − y, (x, y) 6= (0,−5), (2,−5)

3, (x, y) = (0,−5), (2,−5)
.

(a) Find and sketch the domain of f .

The domain is D = {(x, y)|y ≤ x2}. The graph on the xy-plane is the
parabola y = x2 with the region below the parabola shaded.

(b) Find the range of f .

The range is R = [0,∞).

(c) Where is f continuous?

The function
√
x2 − y is continuous on its domain so f will be

continuous on its domain except possibly at the points (0,−5) and
(2,−5). At (0,−5) we have that

lim
(x,y)→(0,−5)

f(x, y) =
√

5 6= f(0,−5)

so f is not continuous here. At (2,−5), we have that

lim
(x,y)→(2,−5)

f(x, y) = 3 = f(2,−5)

so f is continuous here.

So f is continuous on the points {(x, y)|y ≤ x2, (x, y) 6= (0,−5)}.

2. Find the limit or show it does not exist.

(a)

lim
(x,y)→(0,0)

x3y + xy3

x2 + y2
= lim

(x,y)→(0,0)

xy(x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)
xy = 0

(b)

lim
(x,y)→(0,0)

x3y + xy3

x4 + y4

This limit does not exist. Approaching on the line y = x gives
limx→0

x4+x4

x4+x4 = 1 while approaching on the line x = 0 gives limy→0
0
y4

= 0.

(c)

lim
(x,y)→(0,0)

x2y

1− ex2+y2
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Changing to polar we get that this limit is equal to

lim
r→0

r3 cos2(θ) sin(θ)

1− er2

then applying L’Hopital’s rule, this is equal to

lim
r→0

3r2 cos2(θ) sin(θ)

−2rer2
= lim

r→0

3r cos2(θ) sin(θ)

−2er2
=

0

−2
= 0 .

3. I have two functions, f(x, y) and g(x, y). I compute fx and gx and get two of
these three functions: ey, 2xy, x+ y. Then I compute fy and gy and get two of
these three functions: 2x+ ey, xey, x2 + ey. Which function in the first list is
not one of fx or gx and which function in the second list is not fy or gy?

Taking the derivative with respect to y of the first three functions tells us that
fxy and gxy are two of the three functions ey, 2x, 1. Similarly, taking the
derivative with respect to x of the second three functions tells us that fyx and
gyx are two of the three functions 2, ey, 2x. Then as fxy = fyx and gxy = gyx we
see that the fxy and gxy must be ey and 2x.

In the first list, x+ y is not fx or gx. In the second, 2x+ ey is not fy or gy.

4. The equation x2yz − z2 = x3 − y2 determines a surface through the point
(1, 2, 3).

(a) Find the equation of the tangent plane to the surface at this point.

Rewriting the equation as x2yz − z2 − x3 + y2 = 0 and taking
f(x, y, z) = x2yz − z2 − x3 + y2 we have that the tangent plane at (1, 2, 3)
will have formula

fx(1, 2, 3)(x− 1) + fy(1, 2, 3)(y − 2) + fz(1, 2, 3)(z − 3) = 0 .

Then fx(x, y, z) = 2xyz − 3x2 so fx(1, 2, 3) = 9, fy(x, y, z) = x2z + 2y so
fy(1, 2, 3) = 7, and fz(x, y, z) = x2y − 2z so fz(1, 2, 3) = −4.

This gives the tangent plane equation 9(x− 1) + 7(y − 2)− 4(z − 3) = 0

(b) Viewing z as an implicitly defined function of x and y near the point
(1, 2, 3), compute ∂z

∂x
and ∂z

∂y
at x = 1, y = 2.

Using implicit differentiation with respect to x we get that
2xyz + x2y ∂z

∂x
− 2z ∂z

∂x
= 3x2. Solving for the derivative gives ∂z

∂x
= 3x2−2xyz

x2y−2z
which is 9/4 at (1, 2, 3).

Using implicit differentiation with respect to y we get that
x2z + x2y ∂z

∂y
− 2z ∂z

∂y
= −2y. Solving for the derivative gives ∂z

∂y
= −2y−x2z

x2y−2z
which is 7/4 at (1, 2, 3).
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5. Given a function z = f(x, y), one of the following three functions is fx and one
is fy. Identify them. The functions are: ex + ey, ex + y, xey + y.

We know that fx is one of the three functions above so fxy is one of
ey, 1, xey + 1. On the other hand fy is one of the three functions so fxy = fyx
is one of ex, ex, ey. Thus fxy is ey so fx = ex + ey, fy = xey + y.

6. Let z = x cos(y2) + exy. Use differentials to estimate the change in z as x
changes from 7 to 7.1 and y changes from 0 to -.1.

The formula for the differential is dz = ∂z
∂x
dx+ ∂z

∂y
dy. The partial derivatives

are ∂z
∂x

= cos(y2) + yexy and ∂z
∂y

= −2xy sin(y2) + xexy. At (7, 0) these are
∂z
∂x

= 1 and ∂z
∂y

= 7. Also dx = .1 and dy = −.1, so dz = 1(.1) + 7(−.1) = −.6.

7. The two shorter sides of a right triangle are measured then used to calculate
the length of the hypotenuse. The error in measurement of the sides is at most
1 %. Use differentials to estimate the maximum percent error in the length of
the hypotenuse.

Let x, y be the short sides of the triangle. Then the length of the hypotenuse
is z = f(x, y) =

√
x2 + y2. The differential dz is given by

dz = fx(x, y)dx+ fy(x, y)dy. There is a possible 1 % error in x and y so
dx = .01x and dy = .01y. Then fx(x, y) = x√

x2+y2
and fy(x, y) = y√

x2+y2
so

dz =
x√

x2 + y2
(.01x) +

y√
x2 + y2

(.01y) =
(.01)(x2 + y2)√

x2 + y2
= (.01)

√
x2 + y2 .

Divide by z to get the percent error

dz

z
=

(.01)
√
x2 + y2√

x2 + y2
= .01

so the percent error is 1 %.

8. Suppose that w = f(x, y, z) is a differentiable function and that w = 4 when
x = 1, y = 2, z = 3. If fx(1, 2, 3) = 5, fy(1, 2, 3) = −1, fz(1, 2, 3) = 2, compute a
reasonable approximation for f(.9, 2.1, 3.2).

Suppose now that x, y and z are not really independent and that as x and y
vary, z is constrained to move so that xyz = 6. As a result, we can view w as
a function of x and y and we write w = h(x, y) to denote this function.
Compute hy(1, 2).

We will first approximate f(.9, 2.1, 3.2) using the linearization
f(x, y, z) ≈ f(1, 2, 3) + fx(1, 2, 3)(x− 1) + fy(1, 2, 3)(y− 2) + fz(1, 2, 3)(z− 3) =
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4 + 5(x− 1)− (y − 2) + 2(z − 3). So
f(.9, 2.1, 3.2) ≈ 4 + 5(−.1)− (.1) + 2(.2) = 3.8.

To find hy(1, 2) we draw the following tree diagram.

w

f

f fz

x y

We use the chain rule to get that hy(1, 2) = fy(1, 2, 3) + fz(1, 2, 3)∂z
∂y

. Using

that z = 6/(xy) we get that ∂z
∂y

= −6/(xy2) which is −3/2 at x = 1, y = 2 so

hy(1, 2) = −1 + 2(−3/2) = −4.

9. Find ∂w
∂s

when s = 1 and t = 1 where

w = f(x, y, z) = x2 + (y
√

5 + arctan z)
ez

3−
√

y4+z

ln(3 + cos(sin(z) + y))

and x = s2 + st+ t2, y = t3, z = 2st− s2.

w

x y z

s t

We can draw a tree diagram to get that ∂w
∂s

= ∂w
∂x

∂x
∂s

+ ∂w
∂z

∂z
∂s

. We want to avoid
computing ∂w

∂z
if possible so we compute the easy derivatives first:

∂w
∂x

= 2x, ∂x
∂s

= 2s+ t, ∂z
∂s

= 2t− 2s. At t = 1, s = 1 we have x = 3 and so
∂w
∂x

= 6, ∂x
∂s

= 3, ∂z
∂s

= 0. Then

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
= 6 · 3 +

∂w

∂y
· 0 = 18 .

Note that we did not need to find ∂w
∂z

.

10. Suppose w = xy2 + zx2, x = rs, y = s2, z = t4, s = 2t, r = et−1. Draw a tree
diagram and find dw

dt
when t = 1.
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w

x y z

r s

t

Using the chain rule, we get that

dw

dt
=
∂w

∂z

dz

dt
+
∂w

∂y

dy

ds

ds

dt
+
∂w

∂x

∂x

∂s

ds

dt
+
∂w

∂x

∂x

∂r

dr

dt
.

When t = 1 the other variables are r = 1, s = 2, z = 1, y = 4, x = 2 and the
partial derivatives are: ∂w

∂z
= x2 = 4, dz

dt
= 4t3 = 4, ∂w

∂y
= 2xy = 16,

dy
ds

= 2s = 4, ds
dt

= 2, ∂w
∂x

= y2 + 2xz = 20, ∂x
∂s

= r = 1, ∂x
∂r

= s = 2, and
dr
dt

= et−1 = 1.

Combining these results we get that

dw

dt
= 4 · 4 + 16 · 4 · 2 + 20 · 1 · 2 + 20 · 2 · 1 = 224 .

11. Given functions f(r, s) and g(x, y), create a new function by the formula
w = f(y2, g(x, y)). Using the following data, compute the values of ∂w

∂x
and ∂w

∂y

when x = 1, y = 2. (Assume that all partial derivatives are continuous).
g(1, 2) = 3, gx(1, 2) = 4, gy(1, 2) = 5, f(4, 3) = 6, fr(4, 3) = 7, fs(4, 3) = 2,
f(1, 2) = 1, fr(1, 2) = 3, fs(1, 2) = 9.

Rewrite this as w = f(r, s) where r = y2, s = g(x, y). Then we get the
following tree diagram.

w
f f

r s
g

g

y x

When x = 1 and y = 2 we have that r = 4, s = g(1, 2) = 3. Then

∂w

∂x
= fs(4, 3)gx(1, 2) = 2 · 4 = 8

and

∂w

∂y
= fs(4, 3)gy(1, 2) + fr(4, 3)

dr

dy
= 2 · 5 + 7(2y) = 10 + 7 · 4 = 38 .
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12. Let f(x, y) = x2y2 + axy − y4 where a is some constant. The directional
derivative of f at the point (1, 1) in the direction of the point (5, 4) is -1.

(a) Find a.

The partial derivatives are fx(x, y) = 2xy2 +ay, fy(x, y) = 2x2y+ax−4y3

so at (1, 1) they are fx(1, 1) = 2 + a, fy(1, 1) = −2 + a and the gradient is
∇f(1, 1) = 〈2 + a,−2 + a〉. Moving from (1, 1) to (5, 4) is the vector
〈4, 3〉 which has magnitude 5 so the unit vector in that direction is
u = 〈4/5, 3/5〉. This gives a direction derivative of

Duf(1, 1) = ∇f(1, 1) · u = 〈2 + a,−2 + a〉 · 〈4/5, 3/5〉 = (7a+ 2)/5 .

Setting this equal to -1 and solving for a gives that a = −1.

(b) What are the maximum and minimum values of the directional derivative
of f at the point (1, 1)?

The maximum value of the directional derivative is
|∇f(1, 1)| = |〈1,−3〉| =

√
12 + (−3)2 =

√
10. The minimum value of the

directional derivative is −|∇f(1, 1)| = −
√

10.

(c) Find a point such that the directional derivative at (1, 1) in the direction
of that point is as small as possible.

The directional derivative will be as small as possible if we move in the
direction of −∇f(1, 1) = 〈−1, 3〉. Any point in this direction is correct,
perhaps the easiest one to find is (1− 1, 1 + 3) = (0, 4).

13. Suppose that the function f(x, y) is differentiable and assume that f(3, 4) = 7
and ∇f(3, 4) = 〈3,−2〉.

(a) Find a reasonable approximation for f(2.8, 4.1).

f(2.8, 4.1) ≈ f(3, 4) + fx(3, 4)(2.8− 3) + fy(3, 4)(4.1− 4) =
7 + 3(−.2) + (−2)(.1) = 6.2, where the values of the partial derivatives
come from the gradient ∇f(3, 4).

(b) Let h(s, t) = f(s2 + t, st+ 2s). Compute hs(1, 2).

Let z = h(s, t). Then z = f(x, y) where x = s2 + t, y = st+ 2s so we get
the following tree diagram.

z
f f

x y

s t
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Then hs(1, 2) is ∂z
∂s

when s = 1, t = 2. This gives us that

hs(s, t) = fx(x, y)
∂x

∂s
+ fy(x, y)

∂y

∂s
= fx(x, y)(2s) + fy(x, y)(t+ 2) .

When s = 1 and t = 2 we get that x = 3, y = 4 so

hs(1, 2) = fx(3, 4) · 2 + fy(3, 4) · 4 = 3(2) + (−2)(4) = −2.

(c) Now suppose that g(t) is a function that has the property that
f(g(t), t2) = 7 for all values of t. If g(2) = 3, compute g′(2).

Let z = f(x, y) where x = g(t), y = t2. Then dz
dt

= 0 because z = 7 for
any t. Using the chain rule, we get that
0 = dz

dt
= fx(x, y)g′(t) + fy(x, y)(2t). In particular, if t = 2 then

0 = fx(g(2), 4)g′(2) + fy(g(2), 4) · 4 = fx(3, 4)g′(2) + 4fy(3, 4) = 3g′(2)− 8.
Solving 0 = 3g′(2)− 8 gives us that g′(2) = 8/3.

14. Let z = x(ey + x).

(a) Compute ∂z/∂x, ∂z/∂y, and ∂2z/∂y2.

∂z/∂x = ey + 2x, ∂z/∂y = xey, and ∂2z/∂y2 = xey.

(b) Find ∇z at the point (2, 0).

At (2, 0), ∂z/∂x = ey + 2x = 5 and ∂z/∂y = xey = 2 so ∇z(2, 0) = 〈5, 2〉.
(c) What is the directional derivative of z at the point (2, 0) in the direction

toward (−1, 4).

The vector from (2, 0) to (−1, 4) is 〈−3, 4〉 which has magnitude 5, so the
unit vector in the direction of (−1, 4) is u = 〈−3/5, 4/5〉. Then
Duz(2, 0) = ∇z(2, 0) · u = 〈5, 2〉 · 〈−3/5, 4/5〉 = −7/5.

15. Suppose f is a differentiable function and at the point (17,−23) the
directional derivative of f in the direction of the vector 〈3,−1〉 is − 11√

10
. At

that same point, the directional derivative of f in the direction of 〈2, 7〉 is 31√
53

.

Find the directional derivative of f at (17, 23) in the direction of 〈−2, 1〉.
Write ∇f(17,−23) = 〈a, b〉. The unit vector in the direction of 〈3,−1〉 is
〈3/
√

10,−1/
√

10〉 so

− 11√
10

= Duf(17, 23) = 〈a, b〉 · 〈3/
√

10,−1/
√

10〉 = (3a− b)/
√

10 .

This gives us the equation 3a− b = −11. Similarly, the unit vector in the
direction of 〈2, 7〉 is 〈2/

√
53, 7/

√
53〉 so

31√
53

= Duf(17, 23) = 〈a, b〉 · 〈2/
√

53, 7/
√

53〉 = (2a+ 7b)/
√

53
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which gives us the equation 2a+ 7b = 31. Solving the system of equations
3a− b = −11, 2a+ 7b = 31 for a and b gives a = −2, b = 5 so
∇f(17,−23) = 〈−2, 5〉. Then unit vector in the direction of 〈−2, 1〉 is
〈−2/

√
5, 1/
√

5〉 so

Duf(17, 23) = 〈−2, 5〉 · 〈−2/
√

5, 1/
√

5〉 = 9/
√

5 .

16. Find the point or points on the curve 2y3 + 9x2 = 16 that are closest to the
origin.

We want to minimize the distance from (x, y) to (0, 0) which is
√
x2 + y2. The

minimum of
√
x2 + y2 occurs at the same place as the minimum of x2 + y2 so

we can instead find where f(x, y) = x2 + y2 is minimal under the constraint
g(x, y) = 2y3 + 9x2 = 16. Use Lagrange multipliers to get that
〈2x, 2y〉 = ∇f = λ∇g = λ〈18x, 6y2〉. We get the system of equations:
2x = λ18x, 2y = λ6y2, 2y3 + 9x2 = 16. The first equation tells us that x = 0 or
λ = 1/9. If x = 0 then the third equation tells us that y = 2 and we get the
critical point (0, 2). If λ = 1/9 then the second equation becomes 2y = (6/9)y2

which has solutions y = 0, 3. If y = 0 then the third equation gives that
x = 4/3,−4/3 and we get the critical points (4/3, 0), (−4/3, 0). Plugging in
y = 3 to the third equation we see that this is not possible so there are no
more critical points.

The values of f at each critical point are f(0, 2) = 4, f(±4/3, 0) = 16/9. The
curve is the function y = 3

√
(16− 9x2)/2 so the segment from where x = −2 to

where x = 2 is a closed and bounded region and the value of f at the
endpoints of this region is at least 4 so we see that on this region the absolute
min occurs at (4/3, 0), (−4/3, 0). On the rest of the curve, we have that
|x| > 2 so f(x, y) > 4 and thus these points are where the absolute min occurs
on the entire curve.

17. The function w = x2 + y − xy is defined on the region bounded by the curve
y = 9− x2 and the x-axis. Find the maximum and minimum values of w on
this region and the points where they occur.

This is a closed and bounded region so we can find the absolute max and min
by finding all critical points and the value of w at each one. Write
f(x, y) = x2 + y − xy. First check for interior critical points. The partial
derivatives are fx = 2x− y, fy = 1− x. These are both 0 when x = 1, y = 2 so
we get the critical point (1, 2) and this is a point inside the region. Next check
for critical points on y = 9− x2. This can be done either by plugging
y = 9− x2 into f and finding where the derivatives of this function are 0, or
with Lagrange multipliers. Using Lagrange multipliers with constraint
g(x, y) = y + x2 = 9 we get the equations 2x− y = λ2x, 1− x = λ, x2 + y = 9.
The first equation can be rearranged as y = 2x(1− λ) and the second equation
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as x = 1− λ. Combining these we get y = 2x2 and plugging this into
y + x2 = 9 we get the critical points (

√
3, 6), (−

√
3, 6). On the x-axis, y = 0 so

f(x, y) = f(x, 0) = x2 which has derivative 2x and thus is critical at x = 0 so
we get the critical point (0, 0). Finally, we all need to check the corner points
of our region where y = 9− x2 and y = 0 meet which are (3, 0) and (−3, 0).
We thus have the following critical points: (1, 2), (

√
3, 6), (−

√
3, 6), (0, 0),

(3, 0), (−3, 0). The values of w at these points respectively are
1, 9− 6

√
3, 9 +

√
3, 0, 9, 9. The maximum is 9 + 6

√
3 at the point (−

√
3, 6) and

the minimum is 9− 6
√

3 at (
√

3, 6).

18. Find the minimum of w = x2 + 2y2 + 3z2 on the plane x+ y + z = 1 and
where it occurs.

Using Lagrange multipliers gives the system of equations 2x = λ, 4y = λ,
6z = λ, and x+ y + z = 1. Then 2x = 4y so y = x/2. Similarly 2x = 6z so
z = x/3. Plugging in to x+ y + z = 1 gives x+ x/2 + x/3 = 1 so x = 6/11.
Then y = x/2 = 3/11 and z = x/3 = 2/11. Thus we have one critical point at
(6/11, 3/11, 2/11) and the value of w at this point is 6/11.

This points must be an absolute minimum. To see this, consider the region
which is the intersection of x+ y + z = 1 and x2 + 2y2 + 3z2 ≤ 1. This is the
intersection of a solid ellipsoid with a plane so it is a closed and bounded
region and w must have an absolute minimum on this region. The only
interior critical point is (6/11, 3/11, 2/11) where w = 6/11 and everywhere on
the boundary w = 1. Thus the absolute minimum of w on this region is 6/11.
Outside of this region on the plane x+ y + z = 1 we must have that w > 1 so
6/11 is the absolute minimum for the whole plane.

19. A solid spherical ball of radius 3 is centered at the origin. The temperature at
the point (x, y, z) is given by T (x, y, z) = 4x+ 2y + z2. Find the maximum
and minimum temperatures on the ball and where they occur.

This is a closed and bounded region so to find the absolute max and min, we
just need to find all the critical points and see which one has the largest value
of T and which has the smallest value of T . First check for critical points on
the interior of the ball. Any interior critical point will be where all the partial
derivatives of T are 0. But Tx = 4 is never 0 so there are no interior critical
points. Next use Lagrange multipliers to find critical points on the boundary
of the ball, x2 + y2 + z2 = 9. We get the system of equations 4 = λ2x,
2 = λ2y, 2z = λ2z, and x2 + y2 + z2 = 9. The third equation 2z = λ2z implies
that λ = 1 or z = 0. First suppose λ = 1. Then 4 = 2x so x = 2 and 2 = 2y so
y = 1. Then 22 + 12 + z2 = 9 so z = ±2. So we get the critical points (2, 1, 2)
and (2, 1,−2). Next suppose that z = 0. Using the first two equations from
the system of equations, we get that 4y = 2xyλ = 2x so x = 2y. Plug in z = 0
and x = 2y to x2 + y2 + z2 = 9 to get 4y2 + y2 = 9 so y = ± 3√

5
so we get the
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critical points ( 6√
5
, 3√

5
, 0) and (− 6√

5
,− 3√

5
, 0). So we have a total of 4 critical

points. Evaluate T at these points: T (2, 1, 2) = 14 and T (2, 1,−2) = 14,
T ( 6√

5
, 3√

5
, 0) = 6

√
5, and T (− 6√

5
,− 3√

5
, 0) = −6

√
5. So the max is 14 at

(2, 1,±2) and min is −6
√

5 at (− 6√
5
,− 3√

5
, 0).

20. Let f(x, y) = 2x2y + 1
2
y2 − x4 − 12y. Find all critical points of f . For each

critical point, determine if it is a local max, a local min, or a saddle point.

The partial derivatives are fx = 4xy − 4x3, fy = 2x2 + y − 12. These functions
exist everywhere, so the critical points will be where both equations are 0.
The first equation is 0 if x = 0 or y = x2. If x = 0 then 2x2 + y − 12 = 0
implies y = 12 so we get the critical point (0, 12). If y = x2 then the second
equation becomes 2x2 + x2 = 12 so x = ±2 and y = 4. This gives us the
critical points (2, 4), (−2, 4).

Use the second derivative test to determine what is happening at each critical
point. The second order partial derivatives are
fxx = 4y− 12x2, fyy = 1, fxy = 4x. Let D = fxxfyy − (fxy)

2. Then at (0, 12) we
have that D = 48 · 1− 02 = 48. Thus D > 0 and fxx = 48 > 0 so f has a local
minimum at (0, 12). At (2,±4) we have that D = (−32) · 1− (±8)2 = −96 so
D < 0 and f has saddle points at (2, 4) and (−2, 4).
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